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Abstract

DPCM coding is a widely used technique in audio and image processing. It does encode differences

instead of coding input symbols and this leads to a great improvement in the efficiency of the system.

In this project these differences are encoded using Golomb codes, which suites well sequences distributed

according to a Geometric pdf. The performances of several different audio sources (Mono, 16bits) are

investigated and conclusions are inferred.
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1 Introduction

In signal processing, the process of encoding information using fewer bits than the original representation is

called data compression or source coding. Any particular compression can be either lossy or lossless.

• Lossless data compression techniques involve a reversible coding procedure, so that the original content

can be perfectly recovered from the compressed data. This compression procedure is possible only for

digital sources, because any transformation applied to analog data automatically implies some loss.

The leading principle of this class of coding techniques is to exploit the statistical redundancy present

in the data and reduce it to the bone, typically mapping most frequent words into shorter codewords

and least frequent ones into longer codewords.

The main application of lossless coding is in text compression, where a lot of redundancy can be found.

Many techniques for lossless coding exist nowadays, such as Huffman coding, Arithmetic coding and

Dictionary-based techniques like LZ77, LZ78, LZW. Also Run-Length coding techniques are classified

as lossless, and among them it is worth to mention Golomb coding, deeply explained in section 2.2.

However those techniques achieve not too high levels of compression; this is pertinence of the lossy

techniques.

• Lossy data compression techniques do involve some loss of information and the coding procedure is

generally an irreversible transformation that approximate the original content. This compression pro-

cedure introduces some distortion in the reconstruction, and it is needed in the case of analog sources.

The compression ratio achievable by lossy coding is very high, especially comparing it to the maximum

possible ratio achieved with lossless procedures. In particular these techniques have two different tar-

gets: the compressed size and the quality : for the former the purpose is to find the minimum possible

rate for a given distortion (maximum compression criteria), while for the latter the purpose is to mini-

mize the distortion given the rate (maximum fidelity criteria). Examples of lossy coding can be found

in the most diffused formats for video, images and audios, i.e. JPEG, MPEG, 3GPP and many others.

The main principle under lossy coding is the quantization operation, i.e. a process that maps symbols be-

longing to a larger alphabet into symbols belonging to a smaller one. The quantization can be either of

single symbols (scalar quantization) or of many symbols at a time (vector quantization), which is convenient

to exploit again the correlation between subsequent symbols and the structures present in the data.

However vector quantization is a complex procedure, requiring a significant amount of computational re-

sources. Other techniques, which exploit the correlation between samples in a slightly different manner,

result in a significantly less complex system. This is the case of differential encoding techniques, that trans-

mit information by encoding differences, resulting in a very lightweight load. Among them we can identify

the Differential Pulse Code Modulation (DPCM) coding technique explained in detail in section 2.1.

The purpose of this project is to present a system based on the DPCM coding scheme which exploits Golomb

codes to compress the data, starting from many different 16-bits audio tracks. The approach followed is

dealt in section 2, the results are presented in section 3 and finally the conclusions are drawn in section 4.
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2 Technical Approach

In this section the main concepts and techniques exploited for the analyses are explained and a brief overview

of the code implementation is presented.

2.1 DPCM coding scheme

The Differential encoding schemes exploit the correlation present among symbols of a sequence, and make a

prediction on each sample based on its context (previous samples). What is encoded and transmitted are only

the differences between the prediction and the sample value. The basic differential encoding system is known

as the Differential Pulse Code Modulation (DPCM) system and it was developed at Bell Laboratories

a few years after World War II. DPCM coding scheme is one of the most popular speech-encoding systems

and is widely used in telephone communications.

Open Loop DPCM

Considering the sample output xn, it is highly correlated with the context samples xn−1, xn−2, ..., x1, there-

fore it is possible to make a prediction pn = f(xn−1, xn−2, ..., x1) of xn, which depends on the context. This

way what is effectively coded is the difference dn = xn − pn between the sample and its prediction, which

demands very little in terms of bits if compared with the original sample.

However, this coding technique is principally exploit in a lossy manner, i.e., starting from analog sources

and performing a quantization operation. Therefore the problem of recovering an acceptable reproduction

of the original sequence from the quantized difference value, arises. In fact supposing dn = xn−pn, after the

quantization the result is d̂n = Q(dn) = dn + qn, where qn is the quantization error introduced quantizing

the nth difference dn. When the symbol is reconstructed at the receiver side, it reads x̂n = xn +
∑n

i=1 qi.

This means that as much the sequence is long, as the error increases and the sample at the receiver will be

different from the original one.

Closed Loop DPCM

Consequently this basic scheme (Open Loop DPCM ) is replaced by a more efficient one (Closed Loop

DPCM ), which includes a feedback loop at the transmitter side. This allows to exploit the quantized samples

x̂n−1, x̂n−2, ..., x̂1 to make the prediction both at the transmitter and at the receiver, avoiding this way the

accumulation of the quantization error in the process.

The fundamental result of this coding procedure is that the maximum error introduced when reconstructing

a sample is the error introduced by the quantization step of that specific sample difference, and thus depends

only on the quantizer. In fact:

dn = xn − pn
d̂n = x̂n − pn

}
⇒ dn − d̂n = xn − x̂n (1)

A block diagram of the differential encoding system described up to this point is shown in figure 1.

Predictor design

The goal of designing a good predictor is a requirement to minimize the distortion. In fact, how much

the variance is reduced depends on how well the predictor can predict the next symbol based on the past

reconstructed symbols.
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Figure 1: Block diagram of the Closed Loop DPCM scheme.

Considering the distortion with the mean squared error, it reads:

σ2
d = E[d2

n] = E[(xn − pn)2] (2)

However, since the the predictor pn = f(x̂n−1, x̂n−2, ..., x̂1) depends on the reconstructed values {x̂i, i =

1, 2, ..., n − 1}, it is a function of the quantization error which in turns depends on the variance σ2
d. Hence

minimizing the variance is difficult.

This leads to approximate the reconstructed values with the original ones, over the fine quantization as-

sumption, i.e. assuming a small quantization step. Resulting in a predictor pn = f(xn−1, xn−2, ..., x1), which

in general can be assumed, even for infinite sequences, to depend on the previous N samples. It takes the

name of Nth-order predictor and can be written as:

pn = f(xn−1, xn−2, ..., xn−N ) (3)

With this result, supposing the output of the source to be a stationary process, is possible to estimate this

predictor, as it is given by the conditional expectation of the sample xn, given the context, i.e.:

pn = E[xn|xn−1, xn−2, ..., xn−N ] (4)

Unfortunately, the assumption of stationarity is generally not true, and even if it were, finding this conditional

expectation requires the knowledge of nth-order conditional probabilities, which would generally not be

available. Therefore in many applications this problem is simplified a lot considering a Nth-order linear

predictor, i.e., it is obtained as a linear combination of the context samples:

pn =

N∑
i=1

aixn−i (5)

This predictor will be employed also for this project.

As a consequence, the purpose of minimizing the distortion σ2
d, restricts to find the values of {ai} as follows:

∂σ2
d

∂ak
=

∂

∂ak
E[d2

n] =
∂

∂ak
E[(xn −

N∑
i=1

aixn−i)
2] = −2E[(xn −

N∑
i=1

aixn−i)xn−k] = 0, k = 0, ..., N (6)

The last equation in particular, states the Orthogonality principle, for which E[dnxn−k] = 0⇒ dn⊥xn−k.

Further developing equation 6, it is possible to derive the matrix form exploiting the autocorrelation function

Rxx(k) = E[xnxx−k], since the source sequence is assumed as a realization of a real-valued wide-sense
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stationary process:

E[(xn −
N∑
i=1

aixn−i)xn−k] = 0 ⇒ E[xnxx−k] =

N∑
i=1

ai · E[xn−ixx−k]

⇒ Rxx(k) =

N∑
i=1

ai ·Rxx(k − i), k = 0, ..., N

(7)

That can be rewritten in matrix form as:
Rxx(0) Rxx(1) . . . Rxx(N − 1)

Rxx(1) Rxx(0) . . . Rxx(N − 2)
...

...
. . .

...

Rxx(N − 1) Rxx(N − 2) . . . Rxx(0)


︸ ︷︷ ︸

R


a1

a2

...

aN


︸ ︷︷ ︸

a

=


Rxx(1)

Rxx(2)
...

Rxx(N)


︸ ︷︷ ︸

r

(8)

Leading to the final result, also known as the Weiner-Hopf equations in discrete time. Here R is a symmetric,

non-singular semi-definite positive matrix; thus it is invertible, and the coefficients {ai, i = 1, ..., N} can be

drawn as:

R · a = r ⇒ a = R−1 · r (9)

Nevertheless, the data available in practice (hence also in this project) are real data distributed according

to an unknown distribution function. Consequently the autocorrelation function can only be estimated. For

M data points available, it is drawn from the following equation:

R̃xx(k) =
1

M − k

M−k∑
i=1

xixi+k, k = 0, ..., N (10)

Quantizer design

As already stated, in a closed loop DPCM scheme, the error introduced on the compressed sequence depends

only on the quantizer (equation 1). Consequently a good choice for the quantizer is extremely important

to optimize the compression and make a trade-off between the compression ratio and the quantization error

introduced.

To design a well-fitting system, the distribution of the coded data must be kept into account. As in the con-

sidered system the differences {di, i = 1, ..., N} are coded instead of the original samples, their distribution

results to be almost Laplacian, often highly peaked around the origin, due to the fact that the samples are

correlated. The concentration of the distribution around the origin suggests a variable length code to be

more efficient, coding lower-valued samples with longer codewords and viceversa.

This leads to design the quantizer keeping into account that, dealing with variable length codewords, the

selection of the decision boundaries will affect the rate and the performances of the system. The simplest

solution to adopt is to use the Lloyd-Max quantizer, which optimizes the thresholds and the reconstruc-

tion levels, and simply entropy-code the quantizer output.

On the other hand, a more complex and sophisticated approach that leads to even better results is to

entropy-constraint the quantizer, in such a way that the minimization of the variance is constrained with

the imposition that H(Q) ≈ R0, where R0 is the rate and H(Q) the entropy.

Fortunately, at higher rates it is possible to prove that the optimal quantizer is a uniform quantizer, simpli-

fying the problem. Furthermore, it has been shown that the results also hold for lower rates.
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Figure 2: An example of Midtread Uniform Scalar Quantizer with M = 7 levels.

As a result, the quantizer chosen for this project is a Midtread Uniform Scalar Quantizer (figure 2). The

choice is due to the fact that the Midtread Quantizer has an odd number of levels, allowing to code also the

zero valued samples correspondent to silent periods in the audio tracks. The entropy coding in then achieved

with Golomb codes, explained in detail in section 2.2.

As anticipated, the quantizer is uniform, thus both the intervals {bi} and the reconstruction levels {yi} with

i = 1, ...,M are equally spaced, and they are defined as:

bi =


−∞ i = 0

b1 i = 1

bi−1 + ∆ i = 2, ...,M − 1

+∞ i = M

yi =

{
b1 − ∆

2 i = 1

bi−1 + ∆
2 i = 2, ...,M

(11)

where ∆ is the quantization step, defined for a source with output uniformly distributed as constant and

belonging to the interval [−Xmax, Xmax]:

∆ =
2Xmax

M
(12)

Since the quantizer is also Midtread, the number of levels is odd and given by M = 2b − 1. Assuming the

output of the source bounded in the interval [−Xmax, Xmax], the quantization rule is the following:

Q(x) = ∆ ·
⌊
|x|
∆

+
1

2

⌋
· sign(x) (13)

where the notation b c denotes the floor function and only the granular region is considered. The output of

this quantizer is d̂n the quantized prediction error.

2.2 Golomb codes

Golomb coding is a lossless data compression method using a family of data compression codes invented by

Solomon W. Golomb in the 1960s. This family of codes is designed to encode integers with the assumption

that the larger is an integer, the lower is its probability of occurrence, and this fits well variable length coding

of distributions highly peaked around zero, like the Laplacian.
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In addition, Golomb Codes are proven to be optimal prefix codes for alphabets following a geometric distri-

bution. Considering this project’s system, the quantized prediction error has to be entropy coded. If a map

is used to make non-negative-valued the quantizer’s output, the result is distributed almost as a Geometric

Random Variable and this means that a Golomb Code is very well suited to accomplish the task of entropy

coding.

The general procedure to obtain a Golomb Code is the described in the following. Let’s consider a symbol

n ∈ N0 = {0, 1, 2, 3, ...} drawn from a Geometric Probability Mass function (pmf):

px(n) = pn(1− p), 0 < p < 1 (14)

It can be written as n = q ·m+ r, where:

• q = b nmc is the quotient. In Golomb codes it is coded with a unary code, i.e. a code where the symbol

q is transmitted as q ones and the zero is used to end the sequence (e.g. if q = 3 the unary code is

1110).

• r = n mod m, 0 ≤ r < 1 is the remainder. In Golomb codes it is coded with a binary prefix

code, generally with variable-length codewords, that depends on the value of the parameter m. The

procedure is the following:

– if m = 2k, it is the simplest case of Golomb-Rice Codes. Here r is coded using fixed-length

code with k = log2m bits.

– if m 6= 2k, then the first r symbols, i.e. 0, 1, ..., 2blog2 mc−m−1, are represented using the blog2mc
binary representation. The other symbols, i.e. 2dlog2 me −m, ...,m − 1, are coded using dlog2me
bits binary representation of r + 2dlog2 me −m.

If we assume that pm = 1
2 , then the pmf results:

px(k +m) = pm+k(1− p) =
1

2
· pk(1− p) =

1

2
· px(k) (15)

Taking the log2(·) on both sides, the optimal length of px(k + m) is obtained as the optimal length of

px(k) + 1bit, so the code is optimal. Therefore what is to find is the parameter m > 0 for which pm is close

enough to 1
2 optimizing the code lengths:

pm =
1

2
⇒ log2 p

m = −1 ⇒ m =
−1

log2 p
(16)

Since in the most of the cases pm 6= 1
2 , the parameter m is found in such a way that optimizes the code,

drawing pm ≈ 1
2 . Therefore:

m =

⌊
−1

log2 p

⌋
(17)

Once the parameter m and the pmf of the data are known at the receiver, the Golomb Code is easily decoded

in a lossless way from r and q.

On the other hand, as the dealing is made with empirical data, also the parameter p requires to be estimated.

The estimation can be made using the Maximum Likelihood Estimation (MLE) criterion, a method for

estimating the parameters of a probability distribution by maximizing the likelihood function, i.e.:

p̂ = arg max
p∈Θ

L̂n(p;n), L̂n(p;n) =

N∏
i=1

px(ni, p) (18)
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where n = {0, ..., N} and L̂n(p;n) is the likelihood function, obtained as the product of the distribution

px(·) computed on a single sample at a time.

The result of the estimation gives a value of p expressed by:

p̂ =

∑N
i=1 ni

N +
∑N

i=1 ni
(19)

As a consequence the optimal value for m is drawn and this leads to an optimal Golomb Code.

2.3 Implementation

The whole system is implemented in Matlab, and the code holds the following structure:

• main.m is the main executable file where the whole system is built. The system is composed of a 16-bit

audio converter, a DPCM encoder, a quantizer, a Golomb encoder, a Golomb decoder and a DPCM

decoder. First the audio is loaded and it is standardized to 16-bit CD quality. Then, a quantizer

with L levels is built to be used later in the DPCM encoding system. The autocorrelation matrix R is

estimated as well, and the coefficients of the linear predictor of order n are drawn. The input signal

is fed to the DPCM encoder.m which outputs the differences vector. This vector is mapped through

the function map.m into positive numbers, to be further fed to Golomb encoder.m. The result is a

sequence of binary digits, ready to be transmitted and decoded at the receiver first using demap.m, then

Golomb decoder.m and finally extracting the result with DPCM decoder.m. At the end the performances

of the coding system are computed, in particular:

– the Rate (average codelength) to measure the performances of Golomb code.

– the SNR1 to measure the performances of the Quantization.

– the SPER2 and the prediction gain to measure the performances of the predictor.

But further details about the results are given in section 3.

• DPCM encoder.m encodes the input signal using the DPCM technique. It relies on the quantizer built

with build quantizer.m.

• DPCM decoder.m decodes the input signal using the DPCM technique.

• build quantizer.m builds a uniform Midtread quantizer with L (odd) levels.

• map.m Performs a mapping of the difference vector obtained with the DPCM encoding, to a vector of

positive numbers, in such a way that the positive values are mapped to odd numbers and the negative

values to even ones, i.e. f : Z→ N0 such that:

f : {...,−2,−1, 0, 1, 2, ...} = z 7→ f(z) = {..., 4, 2, 0, 1, 3, ...} (20)

• demap.m is the inverse function of map.m, and performs the inverse transformation f−1 : N0 → Z such

that:

f−1 : {..., 4, 2, 0, 1, 3, ...} = f(z) 7→ z = {...,−2,−1, 0, 1, 2, ...} (21)

• Golomb encoder.m encodes with the Golomb encoding procedure the vector of integer numbers with

the optimal value for m and gives a sequence of bits.

1signal to noise ratio
2signal to prediction error ratio
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• Golomb decoder.m decodes with the Golomb decoding procedure the sequence of bits and gives back

the vector of integers.
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Figure 3: The input audio signals.

3 Results

In this section the results of the computation are presented; different kinds of signals are analyzed and

compared. The implementation choices and the proofs are not given here, since they were deeply investigated

in section 2.

3.1 Dataset

The dataset employed for the analyses is composed of several audio files (16bit, mono) in .wav format. These

audios are of different nature, shape and pitch (figure 3). In particular both male and female voices are taken

into account, as well as melodic sounds, music of different genre and songs with voice over music. The whole

set of audio files is listed in table 1.

audio signal original title audio description Fs [KHz]

1 female voice 49mono english speech of a woman. 44.1
2 male voice 54mono german speech of a man. 44.1
3 game music music happy music AshamaluevMusic, kids. 44.1
4 animals sound forest sound sounds from different birds in the forest. 16
5 buongiorno song buongiorno song Luciano Pavarotti, Buongiorno A Te. 44.1
6 guitar sound 58mono guitar solo Zapateado, op. 23 No. 2. 44.1
7 opera music 64mono Opera Carl Orff, Carminia Burana: O fortuna. 44.1
8 country song 70mono Song Eddie Rabbitt, Early in the Morning 44.1

Table 1: List of reference audio files and their specifics.

3.2 Signals and Features

Under a brief overview, the considered input signals present different features, that can be heard, and visual-

ized in the temporal plot of figure 3. The vector of the differences d̂, obtained through the DPCM encoding,

is instead shown in figure 4 together with the original input for a reference audio; the residuals’ samples are
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Figure 4: Original Signal buongiorno vs Residuals obtained after DPCM encoding.

considerably smaller-valued with respect to the original input vector. These samples are distributed with a

Laplacian-like distribution, as shown in figure 5a. As far as they are mapped to positive values, the samples

result being distributed according to a Geometric distribution. Figure 5b shows the mapped values together

with the shape of a Geometric random variable of parameter p̂, where p̂ is estimated from the data with the

maximum likelihood criterion (equation 18). It is possible to see that the analytical curve fits well the data

and this will lead to an optimal estimation of m and thus to an optimal Golomb code.

Laplacian distribution of differences
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Output of DPCM encoder for L = 255 and
n = 1.
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Figure 5: The differences are distributed similarly to a Laplacian, while if mapped seem to fit well a Geometric
distribution. The distributions reported here refer to buongiorno audio signal.

3.3 Performances

The performances of the system are described in the following. As anticipated, the metrics taken into

consideration to measure the performances of the coding system, in relation with the parameters chosen, are

presented below.

• the Rate is the average codelength of the transmitted bit sequence over the channel (output of Golomb

code). It is defined as:

R =
1

M

M∑
i=1

li (22)

where li is the codelength of the i− th codeword in a sequence of M codewords.
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• the SNR is the signal to noise ratio measurement, and it is needed to measure the performances of

the system. It considers foremost the error that is introduced in the quantization step, in the DPCM

encoder, and it is defined as:

SNRdB = 10 log10

( ∑M
i=1 x

2
i∑M

i=1 (xi − x̂i)2

)
(23)

• the SPER is the signal to prediction error ratio and it is generally used to measure the performances

of the predictor. It is defined as:

SPERdB = 10 log10

( ∑M
i=1 x

2
i∑M

i=1 (xi − pi)2

)
(24)

• the prediction gain, defined as:

GDPCM dB = 10 log10

(
σ2
x

σ2
d

)
(25)

where σ2
x is the input signal variance and σ2

d is the theoretic variance of the residuals.

In the following, the analysis is split to take into account separately each block of the system.

Quantization

The error that can be measured at the output of the system depends on the error introduced in the quanti-

zation (see equation 1) inside the DPCM encoder, and depends on the number of quantization values chosen.

The distance between the output samples and the input ones grows as the number of quantization levels is

reduced. A good measure that can be exploited in order to test the goodness of the quantizer is the SNR,

as figure 6a shows. The red dotted line represents the upper bound for the SNR reachable with a uniformly

distributed input and a uniform quantizer with L = 255 bits (that is 48.16dB). The last point for all the

signals’ curves, which correspond to the SNR value for L = 255, is sufficiently close to the boundary, hence

the performances are to be considered acceptable.

Also the predictor is influenced by the number of quantization levels, and this can be seen in the SPER

behaviour in figure 6b. The predictor is better with many quantization levels, but it tends to saturate after

a sufficiently large value of L. The obtained results’ behaviour agree with the reference example of [1].
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Figure 6: SNR and SPER values to quantization levels for different audio files with n = 1.
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Prediction

The predictor’s order n instead influences the system in a different way. Since the prediction is made con-

sidering the past n samples, the performances of the predictor result to be even better, as the considered n

samples are correlated, and the SPER provides the most relevant measurement of its goodness.

Figure 7b shows the behaviour of the SPER for different signals. It is to notice that an increase in the order

leads to better performances up to a certain value. In fact, the SPER improves until the past n considered

samples are correlated with the currently considered one. When the threshold is overcome, the SPER tends

to saturate. If the order is increased more, the samples are no longer correlated, and the performances

worsen. Asymptotically, for n→∞, the process tends to be whitened. The results otained are comparable

with the reference example of [1] and the SPER behaviours are similar to [4].

The SNR is not much affected, since the predictor affects first the values of d in the DPCM encoder, and

then the value of d̂ changes accordingly with the quantization. This way the SNR doesn’t depend much on

the prediction and remains almost stable for different predictor’s orders.

Table 2 reports some additional results. The prediction goodness is confirmed by the variance ratio, which is,

for every order of the predictor, very close to the theoretical value. A little decrease occurs if the predictor’s

order is increased, since the considered processes are theoretically stationary, but the real data available are

not. In addition, also the prediction Gain is considered. It is possible to notice that it is in agreement with

the SPER and rate behaviours for the most of the signals.

A curious exception is made by the guitar sound which holds a particular behaviour in both SNR and SPER

diagrams. This is due to the accentuated nonstationarity of the signal, which can be clearly seen in worse

values of variance ratio, as well as in the divergence between the theoretical gain and the empirical SPER

value.
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Figure 7: SNR and SPER values to prediction orders for different audio files with L = 255.

Coding

To measure the performances of Golomb coding the rate can be employed, that is the average length of its

output codewords. However, in this project the only parameter m of the Golomb coding system is fixed

by the estimated optimal value of p̂. Therefore the rate is not affected by Golomb coding, but only on

the Golomb input d̂ which depends on the DPCM encoder output, thus on the parameters L and n. This

dependence is shown in figure 8.
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signal L n σ2
d model/σ

2
d GDPCM [dB] SPERdB R [bits/codeword]

1 0.9963 10.5209 10.5045 3.2948
female voice 255 2 0.9925 11.0988 11.0656 3.2206

4 0.9932 16.0061 15.5632 2.9973
1 0.9999 2.3966 2.3964 6.2974

animals sound 255 2 0.9996 3.2626 3.2609 6.1832
4 0.9992 5.1647 5.1611 5.9006
1 0.9908 16.2994 16.2594 3.5289

buongiorno song 255 2 0.8946 21.1323 20.6484 2.9484
4 0.8637 21.2802 20.6439 2.9784
1 0.9742 17.4379 16.0807 3.8338

guitar sound 255 2 0.9235 18.5043 23.3378 2.6049
4 0.8152 19.4628 22.0825 3.1647

Table 2: performances of some sample signals with different behaviours.

On the other hand, it is possible to test the optimality for the value of m found, making it varying and

proving that the m found is the one that gives minimum rate, keeping the parameters L and n fixed. The

result is shown in figure 9. In some cases with too low levels of quantization, the estimated probability p̂

resulted too low to guarantee m > 0 and m was set to 1.

Figure 8b instead shows the relationship between the quantization levels and the rate. It is possible to see

that if the number of quantization levels increases, the rate increases as well. This can be explained taking

into account the fact that increasing L the symbols to be represented assume higher values. If there was not

Golomb coding the result would be intuitive. On the other hand, also in this case the average codelength

increases, since the distribution of the differences does not change in an extreme way varying L, and the

small variations of the optimal value of m are increasing with L. This leads to a longer representation of the

values of r and q on average.

Figure 8a shows the rate as a function of the predictor’s order. It is possible to notice that the behaviour is

in agreement with the SPER diagram of figure 7b. In fact in general an increase of the rate corresponds to a

decrease in the SPER value (observe for example the behaviour of opera music, or the behaviour of animals

sound). Like the SPER, the rate has a minimum and after a certain value, it does not improve anymore.

This because if too high values of the predictor are considered, the samples are no longer correlated and

the model is overfitted. The best predictor order is to be found in the minimum rate, and in the maximum

SPER before saturation occurs.
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Figure 8: rate versus predictor order and quantization levels.
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Figure 9: rate as a function of parameter m in the Golomb code. In this example (buongiorno audio signal
with n = 1, L = 255) the optimal m = 3, drawn from p̂ = 0.7738 (see derivation in section 2), is the
minimum.

Observations

From the results obtained it is possible to make some observations about the different behaviours of the sig-

nals. In general their behaviours are very similar one another, but an exception is made for a couple of them.

The behaviour of animals sound is peculiar, because it has very worst performances, despite a behaviour

similar to the others. This is probably due to the fact that the signal is noisy, so it is almost stationary but

not much correlated. This way the samples are hard to be predicted from the previous.

Some tests were led also with audio files representing a bomb explosion and a speech disturbed by vuvuzela

noise, but the results obtained are not reported; from these analyses very bad results were obtained. This

can be explained in the fact that also those kinds of signals are very noisy and unpredictable because of

uncorrelation between samples. In addition, they are also nonstationary due to the oscillating behaviours of

SNR and SPER.

4 Conclusions

In this paper a DPCM system, exploiting lossless Golomb coding, is explored. The system is analyzed from

a theoretical point of view and the results of the Matlab implementation are investigated.

The relationships between the SNR, SPER and rate measurements suggest that higher level predictors, and

quantizers with many quantization levels, lead to achieve the best performances. On the other hand an in-

crease in the quantization levels means a decrease in the rate and longer length codewords to be transmitted

over the channel. This way, a tradeoff between the SNR and rate guarantee the best performances for the

system. In general also the prediction order is better to be kept low, in order to make easier the computation

and achieve the same, or even better performances and avoid overfitting the data.

The issue that arose with the nonstationarity is an open problem. Probably it can be mitigated by applying

some regularization to the autocorrelation matrix of the signals, or completely change the system structure

and, in particular for speech coding, use an adaptive predictor.
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