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LiDAR Semantic Segmentation

• Classification of 3D points for scene 

understanding.

• Many applications, e.g., autonomous 

driving, robotics, remote sensing.

˃ SemanticKITTI dataset [1]

• Deep Learning methods.

˃ RandLA-Net [2]

[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. “SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences”. 

In International Conference on Computer Vision (ICCV), 2019. 



LiDAR SS methods taxonomy
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Deep Learning architecture

[2] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham. “RandLA-Net: efficient semantic segmentation of large-scale point clouds,” in Proc. of 

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 11 108–11 117.
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Output and dataset analyses



Hierarchical Grouping
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Hierarchical loss function:

[3] Umberto Michieli, Edoardo Borsato, Luca Rossi, and Pietro Zanuttigh. Gmnet: Graph matching network for large scale part semantic segmentation in the wild. In 

European Conference on Computer Vision, pages 397–414. Springer, 2020.



Batch Organization
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Coarse-to-Fine training

N epochs 2N epochs

[4] Otilia Stretcu, Emmanouil Antonios Platanios, Tom Mitchell, and Barnabás Póczos. Coarse-to-fine curriculum learning. arXiv preprint arXiv:2106.04072, 2021.
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Coarse-to-Fine training

N epochs 2N epochs

[4] Otilia Stretcu, Emmanouil Antonios Platanios, Tom Mitchell, and Barnabás Póczos. Coarse-to-fine curriculum learning. arXiv preprint arXiv:2106.04072, 2021.
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Contrastive Learning
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Feature Level
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Jain’s fairness index
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Fairness loss function:

Fairness index:

[5] Adian Fatchur Rochim, A. Muis, and R. Sari. A discrimination index based on jain’s fairness index to differentiate researchers with identical h-index values. Journal of 

Data and Information Science, 5:5 – 18, 2020.



Quantitative Results
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Additional Results

Tests with original batch size 
𝒃 = 𝟔

Ablation Study

Hierarchy Fairness Coarse-to-Fine



Qualitative Results

Groundtruth Standard Fairness 𝛾 = 10 Hierarchical 𝛾 = 0.05



Conclusions

• Faster in convergence time and 
better in terms of mIoU.

• Better results in macro-classes 
classification.

• Better balancement of classes.



Future works

• Focus on Feature level regularization, 
rather than on Output level.

• For methods generalization, change:

• Dataset

• Architecture

• Task

Features

Output
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